The Economic Complexity Index (ECI) and the Product Complexity Index (PCI) are, respectively, measures of the relative knowledge intensity of an economy or a product. ECI measures the knowledge intensity of an economy by considering the knowledge intensity of the products it exports. PCI measures the knowledge intensity of a product by considering the knowledge intensity of its exporters. This circular argument is mathematically tractable and can be used to construct relative measures of the knowledge intensity of economies and products (see methodology section for more details).
ECI has been validated as a relevant economic measure by showing its ability to predict future economic growth (see Hidalgo and Hausmann 2009), and explain international variations in income inequality (see Hartmann et al. 2017.
This page includes rankings using the Economic Complexity Index (ECI).
Showing
Year Range
Country | 2003 | 2004 | 2005 | 2006 | 2007 | ||
---|---|---|---|---|---|---|---|
1 |
![]() |
2.45075 | 2.47862 | 2.46767 | 2.40412 | 2.34652 | |
2 |
![]() |
2.19574 | 2.20445 | 2.15958 | 2.11126 | 2.01485 | |
3 |
![]() |
2.12764 | 2.05783 | 2.06907 | 2.05479 | 1.99311 | |
4 |
![]() |
2.09665 | 2.08697 | 2.02943 | 1.94426 | 1.91852 | |
5 |
![]() |
1.80769 | 1.81559 | 1.80046 | 1.77725 | 1.77327 | |
6 |
![]() |
1.94824 | 1.89629 | 1.77065 | 1.72653 | 1.7096 | |
7 |
![]() |
1.76393 | 1.81965 | 1.74605 | 1.7452 | 1.70293 | |
8 |
![]() |
1.85046 | 1.76594 | 1.74324 | 1.66414 | 1.62483 | |
9 |
![]() |
1.53699 | 1.63902 | 1.5652 | 1.46932 | 1.55653 | |
10 |
![]() |
1.31421 | 1.27258 | 1.41097 | 1.52046 | 1.54709 | |
11 |
![]() |
1.55938 | 1.53388 | 1.54784 | 1.55209 | 1.52445 | |
12 |
![]() |
1.60873 | 1.55541 | 1.54456 | 1.50134 | 1.47143 | |
13 |
![]() |
1.42282 | 1.55648 | 1.54609 | 1.49585 | 1.44105 | |
14 |
![]() |
1.50739 | 1.50872 | 1.4818 | 1.44935 | 1.40257 | |
15 |
![]() |
1.11232 | 1.15856 | 1.17404 | 1.2364 | 1.30326 | |
16 |
![]() |
1.37375 | 1.3861 | 1.39804 | 1.34865 | 1.29984 | |
17 |
![]() |
1.62751 | 1.51601 | 1.3506 | 1.37041 | 1.29819 | |
18 |
![]() |
1.37738 | 1.33257 | 1.27927 | 1.23122 | 1.26407 | |
19 |
![]() |
1.20213 | 1.20926 | 1.28788 | 1.27784 | 1.20851 | |
20 |
![]() |
1.21646 | 1.18126 | 1.18347 | 1.09357 | 1.09737 | |
21 |
![]() |
1.04926 | 1.1044 | 1.0958 | 1.04361 | 1.08661 | |
22 |
![]() |
1.02195 | 0.978828 | 0.986745 | 1.10303 | 1.06339 | |
23 |
![]() |
1.04465 | 1.04322 | 1.0347 | 1.02466 | 1.02372 | |
24 |
![]() |
0.897007 | 0.899269 | 0.967138 | 0.968439 | 0.978851 | |
25 |
![]() |
0.645311 | 0.681113 | 0.735727 | 0.787117 | 0.842586 | |
26 |
![]() |
0.919277 | 0.862716 | 0.848054 | 0.811793 | 0.789332 | |
27 |
![]() |
0.753853 | 0.854059 | 0.795607 | 0.781241 | 0.716039 | |
28 |
![]() |
0.515964 | 0.562663 | 0.674146 | 0.694548 | 0.713069 | |
29 |
![]() |
0.723122 | 0.832963 | 0.858138 | 0.856248 | 0.682706 | |
30 |
![]() |
0.620072 | 0.678498 | ||||
31 |
![]() |
0.373828 | 0.320218 | 0.42384 | 0.493627 | 0.673123 | |
32 |
![]() |
0.758139 | 0.775049 | 0.757271 | 0.716319 | 0.660506 | |
33 |
![]() |
0.488495 | 0.559365 | 0.627309 | 0.638432 | 0.637016 | |
34 |
![]() |
0.442061 | 0.452979 | 0.474971 | 0.587449 | 0.632635 | |
35 |
![]() |
0.488237 | 0.551859 | 0.595211 | 0.553144 | 0.601226 | |
36 |
![]() |
0.311667 | 0.309156 | 0.427594 | 0.532376 | 0.549968 | |
37 |
![]() |
0.42281 | 0.399357 | 0.450112 | 0.477157 | 0.548606 | |
38 |
![]() |
0.210007 | 0.365334 | 0.429642 | 0.52393 | 0.529734 | |
39 |
![]() |
0.549568 | 0.567609 | 0.574415 | 0.5907 | 0.527091 | |
40 |
![]() |
0.164931 | 0.196164 | 0.309178 | 0.448797 | 0.521501 | |
41 |
![]() |
0.65224 | 0.568381 | 0.557305 | 0.607811 | 0.510294 | |
42 |
![]() |
0.418108 | 0.446709 | 0.463214 | 0.433048 | 0.491304 | |
43 |
![]() |
0.176945 | 0.177247 | 0.252509 | 0.366668 | 0.413431 | |
44 |
![]() |
0.365341 | 0.309366 | 0.34386 | 0.373395 | 0.410246 | |
45 |
![]() |
0.25454 | 0.287348 | 0.334674 | 0.348336 | 0.340088 | |
46 |
![]() |
-0.056157 | -0.017576 | 0.113553 | 0.169187 | 0.298636 | |
47 |
![]() |
0.033435 | 0.025462 | 0.036751 | 0.120865 | 0.262895 | |
48 |
![]() |
0.221214 | 0.210503 | 0.233397 | 0.172724 | 0.204131 | |
49 |
![]() |
0.176804 | 0.152537 | 0.158145 | 0.167513 | 0.168601 | |
50 |
![]() |
0.128366 | 0.094685 | 0.16654 | 0.237984 | 0.165269 | |
51 |
![]() |
-0.005396 | -0.0344 | -0.119035 | -0.000206 | 0.123978 | |
52 |
![]() |
-0.113429 | 0.012317 | -0.044752 | 0.009857 | 0.116103 | |
53 |
![]() |
-0.022571 | 0.002533 | 0.03593 | 0.053536 | 0.073768 | |
54 |
![]() |
0.096728 | -0.045061 | 0.017114 | 0.009544 | 0.065203 | |
55 |
![]() |
0.141137 | 0.108143 | 0.108932 | 0.053324 | 0.024946 | |
56 |
![]() |
-0.316525 | -0.279088 | -0.159174 | -0.131907 | -0.002222 | |
57 |
![]() |
-0.157405 | -0.090661 | -0.085822 | 0.027597 | -0.021976 | |
58 |
![]() |
0.010613 | -0.004518 | 0.006471 | -0.074199 | -0.022522 | |
59 |
![]() |
-0.418974 | 0.1045 | 0.024745 | -0.164568 | -0.052826 | |
60 |
![]() |
0.042335 | -0.019115 | -0.071912 | -0.133663 | -0.072815 | |
61 |
![]() |
-0.015577 | -0.079228 | -0.03753 | -0.118449 | -0.08396 | |
62 |
![]() |
0.104983 | 0.155848 | -0.074557 | -0.14292 | -0.153061 | |
63 |
![]() |
0.071435 | 0.003869 | 0.033114 | -0.015152 | -0.153895 | |
64 |
![]() |
-0.172163 | -0.062273 | -0.107521 | -0.191644 | -0.17045 | |
65 |
![]() |
-0.038353 | -0.218672 | -0.213502 | -0.155239 | -0.171363 | |
66 |
![]() |
-0.069191 | -0.150324 | -0.150391 | -0.196433 | -0.171878 | |
67 |
![]() |
-0.102685 | -0.094959 | -0.080838 | -0.116526 | -0.189023 | |
68 |
![]() |
-0.368092 | -0.351883 | -0.313441 | -0.225445 | -0.220008 | |
69 |
![]() |
-0.469881 | -0.300896 | -0.332228 | -0.211474 | -0.222327 | |
70 |
![]() |
-0.408678 | -0.353519 | -0.260139 | -0.295499 | -0.227969 | |
71 |
![]() |
0.178932 | -0.17425 | -0.18585 | -0.305433 | -0.257126 | |
72 |
![]() |
-0.745175 | -0.540399 | -0.792679 | -0.520017 | -0.267441 | |
73 |
![]() |
-0.538303 | -0.294213 | -0.307798 | -0.427749 | -0.281016 | |
74 |
![]() |
-0.102081 | -0.271761 | -0.249486 | -0.208866 | -0.340398 | |
75 |
![]() |
-0.062459 | -0.134651 | -0.147508 | -0.163963 | -0.342388 | |
76 |
![]() |
-0.156717 | -0.11916 | -0.268955 | -0.163299 | -0.350656 | |
77 |
![]() |
-0.630272 | -0.653033 | -0.632908 | -0.518922 | -0.378907 | |
78 |
![]() |
-0.62927 | -0.59254 | -0.543395 | -0.49913 | -0.429014 | |
79 |
![]() |
-0.02384 | -0.128714 | -0.245883 | -0.395101 | -0.490889 | |
80 |
![]() |
-0.463409 | -0.453 | -0.433318 | -0.430205 | -0.494788 | |
81 |
![]() |
-0.343785 | -0.373302 | -0.395862 | -0.404289 | -0.495619 | |
82 |
![]() |
-0.76984 | -0.648625 | -0.48776 | -0.504934 | -0.522127 | |
83 |
![]() |
-0.751032 | -0.770235 | -0.789144 | -0.628576 | -0.562095 | |
84 |
![]() |
-0.566719 | -0.603935 | -0.516896 | -0.602863 | -0.582084 | |
85 |
![]() |
-0.514557 | -0.648479 | -0.579638 | -0.554171 | -0.614336 | |
86 |
![]() |
-0.656674 | -0.566724 | -0.676137 | -0.74113 | -0.623958 | |
87 |
![]() |
-0.575552 | -0.701251 | -0.6198 | -0.703524 | -0.680229 | |
88 |
![]() |
-0.875592 | -1.11 | -1.11468 | -0.788727 | -0.682755 | |
89 |
![]() |
-0.941886 | -0.86175 | -0.749744 | -0.694426 | -0.685109 | |
90 |
![]() |
-0.853785 | -0.881575 | -0.898796 | -0.79443 | -0.750568 | |
91 |
![]() |
-0.843126 | -1.01988 | -0.891806 | -0.883054 | -0.820657 | |
92 |
![]() |
-0.856247 | -0.846191 | -0.77456 | -0.851284 | -0.834038 | |
93 |
![]() |
-0.797802 | -0.919345 | -0.856918 | -0.851524 | -0.871062 | |
94 |
![]() |
-0.972446 | -0.872446 | -0.809369 | -0.821983 | -0.889482 | |
95 |
![]() |
-0.818465 | -0.708473 | -0.845061 | -0.856364 | -0.891555 | |
96 |
![]() |
-0.676074 | -0.758799 | -0.856163 | -0.931563 | -0.895164 | |
97 |
![]() |
-0.807707 | -0.763565 | -0.820232 | -0.892176 | -0.900827 | |
98 |
![]() |
-0.952721 | -0.940244 | -0.915679 | -0.757745 | -0.917194 | |
99 |
![]() |
-1.09653 | -0.934754 | -0.925683 | -1.17274 | -0.921299 | |
100 |
![]() |
-0.554921 | -0.655761 | -0.805754 | -0.846134 | -0.936692 | |
101 |
![]() |
-1.6291 | -0.956786 | -1.31646 | -1.26555 | -0.961084 | |
102 |
![]() |
-1.1201 | -1.23386 | -1.17652 | -1.19826 | -1.01275 | |
103 |
![]() |
-0.681431 | -0.865264 | -0.924295 | -0.971723 | -1.03852 | |
104 |
![]() |
-1.24972 | -1.35863 | -1.38268 | -1.22288 | -1.05022 | |
105 |
![]() |
-1.20383 | -1.20019 | -1.18539 | -1.11331 | -1.08764 | |
106 |
![]() |
-0.36504 | -0.595619 | -0.769416 | -0.981761 | -1.08907 | |
107 |
![]() |
-0.93631 | -1.1606 | -0.937456 | -1.05951 | -1.14921 | |
108 |
![]() |
-1.1042 | -1.16123 | -1.34175 | -1.35887 | -1.17151 | |
109 |
![]() |
-1.14524 | -1.19819 | -1.17276 | -1.19109 | -1.17687 | |
110 |
![]() |
-1.02579 | -1.14921 | -1.17042 | -1.20287 | -1.2005 | |
111 |
![]() |
-1.23973 | -1.3014 | -1.23916 | -1.24742 | -1.20659 | |
112 |
![]() |
-1.20899 | -1.34734 | -1.1731 | -1.2241 | -1.27774 | |
113 |
![]() |
-1.23738 | -1.27946 | -1.2167 | -1.31008 | -1.29502 | |
114 |
![]() |
-1.44892 | -1.56273 | -1.54465 | -1.51778 | -1.39501 | |
115 |
![]() |
-1.59046 | -1.3383 | -1.23361 | -1.22219 | -1.53055 | |
116 |
![]() |
-1.45477 | -1.55106 | -1.81234 | -1.80901 | -1.62851 | |
117 |
![]() |
-0.976701 | -1.53823 | -1.22737 | -1.73472 | -1.82521 | |
118 |
![]() |
-1.35403 | -1.41438 | -1.56017 | -1.6858 | -1.82685 | |
119 |
![]() |
-2.06924 | -0.705732 | -0.787959 | -0.798225 | -1.91304 | |
120 |
![]() |
-2.05963 | -2.40836 | -2.32188 | -2.1849 | -2.06466 | |
121 |
![]() |
-1.5408 | -1.57514 | -1.82539 | -1.99046 | -2.07678 |